sdas

View on PCB Design and Implementation today and in the future

Written by Admin on . Posted in PCB, PCB Design

PCBs are the cornerstone of just about all modern electronics, and they evolve along with the rest of the field. So what is the future of the PCB? The first things we’re likely to see is PCBs shrinking to meet the increasingly intense demand for thinner, lighter, and more powerful electronics. But these changes are just the tip of the iceberg. It’s also possible that we’ll see PCBs take a more active role in their devices. Currently they act as relays of a sort. They’re designed to carry electrical current, but what if they could take a more active role? As technology progresses we’re going to start even more seeing integrated logic and other components within PCBs themselves. This isn’t entirely new technology, but as implementation improves we’re going to see it making a huge difference in how devices function. It is vastly more efficient to have components integrated into the PCB because travel time for currents can be reduced, and even more importantly manufacturers will be able to cut down on wasted space within their designs. This technology is also going to allow for leaps in asynchronous processing which will allow for faster transfer speeds. Already we see transfer speeds on the order of several gigabits. We are rapidly approaching the point where PCB optimization is critical to creating good devices.
The Future lies in 3D printing
R&D will be critical but of course even the best technologies can fall by the wayside if they’re not economical enough or easy enough to manufacture. This is where emerging technologies like 3d printing will shine. We’ll see printers printing with conductive materials and manufacturing PCBs far more efficiently than would ever have been possible with more traditional laminated frameworks. 3d printers are now becoming capable of printing copper and other materials, and they can do so onto almost any materials. As a net effect this means that it will become far easier to implement cheap electronics into just about any household object. Printing PCBs with this method could cost as little as $50 for each meter of printed electronics. But although these 3d printed structures are cheap and easy to implement they can lack efficiency. They can be made complex, but for the moment complex 3d printed PCBs are difficult to produce in large volumes.
If you want to see the future of PCBs it is here already with Micro Electronic flex boards with 1 mil lines and spaces
Additionally, PCBs can be flexible, transparent, and durable. There flex and rigid flex PCBs as well three dimensional PCBs. There are also rolled flex boards that can be up to 30 feet long. There are also very sophisticated PCBs. Microvias for example, are used in a number of applications interconnecting the fused layers in PCBs and creating far denser circuits capable of accepting more complex components. This is just another innovation which will allow for smaller and more efficient PCBs. In summary. PCBs will continue get faster, smaller, and more efficient in the short term, but what is in store for us longer term? Here is a safe bet, things will get smaller and more complex. If you want to see what PCBs will look like in the future look at Micro Electronic Circuits such as the ones that go into very advanced hearing aids and in medical electronics such as a diagnostic capsule that you swallow and the boards that go into ultrasound wands. These are tiny flex boards with 1 mil lines and spaces. Now that’s the future.

 

fsd'f

Why it is Necessary to Control Humidity in PCB Assemblies

Written by Admin on . Posted in PCB, PCB Assembly and component, PCB Manufacturing

A Printed circuit board is quite literally an insulated board on which wire is laid to create a circuit. They are a critical and very necessary part of all electronic products. They are in everything from complex computers to basic smartphones. Since they are the base for the circuits that transfer electricity, if they were not included in an average electric machine that machine would just not work not to mention the fact that there would be no place to put the components. The market for PCBs is currently at $60 Billion, that’s Billion with a “B” and growing.
Just like any other electronics, require careful conditions during production to ensure that the integrity of the board is maintained before shipping. In general, things like dust, heat, and the focus of this article, humidity, will have an effect on the PCB.
Just like dust can interfere with and even interrupt circuits, and heat can cause some metal within the circuits to melt, humidity, meaning the amount of moisture in the air, can allow current to run through unwanted areas of the circuit board, causing extreme damage to the board and the circuits on it. Although that should be enough to prove that control over humidity, there are additional factors that could be hazardous to the board, and, by extension, the equipment that it is a part of. Imagine if an expensive new desktop computer fell apart, or in a more extreme example, a computer-guided car or airplane failed mid-transit.
Too much moisture in the board can cause numerous problems from delamination to solderability issues. It is a very simple fact that moisture is not good for any electronic component and this is especially true when it comes to PCBs. Reality is that PCBs are extremely absorbent so both the builder and the end user must use extreme caution when avoiding moisture.
If you are an end user in a high humidity state such as Florida it is highly recommended that you pre-bake the boards before you solder them. Yes, the fabricator will have packed them with desiccant packs to keep the moisture down. But even the short time that the boards are exposed to humidity before they are put into the assembly process can be enough for that board to absorb too much moisture.
The most recommended way of keeping your products safe is to keep a humidity level at around %50, or between %40-%60, which will let the PCBs stay dry while not drying out completely or causing static discharge, which can occur below this level of humidity: a normal amount of moisture in the air only will not affect them.
Remember moisture is our enemy. But baking the moisture out the boards prior to the assembly process is the simplest and most cost-effective way to keep your boards safe and dry.

Uses of Printed Circuit Board Components & Technology

Written by Admin on . Posted in PCB, PCB Assembly and component, PCB Design

consumerfcsdfs

A printed circuit board by itself is a very simple piece of technology: it is a board on which a circuit is laid out. However, oftentimes when people refer to a PCB they are also referring to the components that form the beginning of the circuit. The circuit is essential to the entire piece of equipment the board is in, which is why people include it when talking about the PCB. These include the necessary power supply, along with various other parts. This article will explain the different components in a PCB and the circuit that goes with it.

Also Read: PCB Fabrication Making a World of Possibilities a Realty

A printed circuit board first has a side of copper trace on it, which carries electricity around the board to complete the circuit. A PCB can have many different layers, but there will always be at least one side with copper tracing on it, bringing charge to the necessary places. The layers are important, however, since more complex electronics require more and more layers. The layers are made largely out of copper with various other metals around the edges, though it is what’s on the board that’s important. As the charge travels through the tracing, it also passes through the components of the PCB. The charge is diminished depending on what resistors it encounters, and when it is transferred through a transistor the charge grows to whatever it needs to be in order to power the electronics. There are also parts that will let charges through or block them depending on their positions, such as diodes and switches.
The circuits laid out on the boards are still not very impressive, however. The real value of PCBs come from the fact that they make up so many forms of technology. If you are a PCB manufacturer and you are reading this article wondering about what kinds of uses you can market your boards with, just consider the many ways they are applied around the world. There are hardly any electronic devices that don’t contain circuit boards, in fact: PCBs are in microwaves, every kind of computer, and practically anything that can be programmed a certain way: which includes calculators and even most modern cars. As technology advances, it is sure that we will still rely on PCBs to be the backbone of the latest electronics- meaning that there will be a huge demand for printed circuit boards in the foreseeable future.

Also Read: The Advantages of On-Demand Manufacturing

But how exactly does a PCB allow these complex electronics to work, you ask? Well, this is the simplest aspect of the PCB: by itself, it can’t really do anything except power the LEDs and other components that are on the board. But when it is connected to other parts in a larger system, it can deliver electric charge to those parts and support the whole system physically due to the sturdiness of the boards. It delivers electricity through the copper tracing: really the key to the entire board and by extension, all the electronics the boards appear in.